Recurrent Neural Networks Hardware Implementation on FPGA
نویسندگان
چکیده
Recurrent Neural Networks (RNNs) have the ability to retain memory and learn data sequences. Due to the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware. CPUs do not currently offer large parallelism, while GPUs offer limited parallelism due to sequential components of RNN models. In this paper we present a hardware implementation of Long-Short Term Memory (LSTM) recurrent network on the programmable logic Zynq 7020 FPGA from Xilinx. We implemented a RNN with 2 layers and 128 hidden units in hardware and it has been tested using a character level language model. The implementation is more than 21 faster than the ARM CPU embedded on the Zynq 7020 FPGA. This work can potentially evolve to a RNN co-processor for future mobile devices.
منابع مشابه
Pulse Density Recurrent Neural Network Systems with Learning Capability Using FPGA
In this paper, we present FPGA recurrent neural network systems with learning capability using the simultaneous perturbation learning rule. In the neural network systems, outputs and internal values are represented by pulse train. That is, analog recurrent neural networks with pulse frequency representation are considered. The pulse density representation and the simultaneous perturbation enabl...
متن کاملTransforming the LSTM training algorithm for efficient FPGA-based adaptive control of nonlinear dynamic systems
In the absence of high-fidelity analytical descriptions of a given system to be modeled, designers of model-driven control systems rely on empirical nonlinear modeling methods such as neural networks. The particularly challenging task of modeling timevarying nonlinear dynamic systems requires from the modeling technique to capture complex internal system dynamics, dependent of long input histor...
متن کاملFPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing
This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...
متن کاملFPGA Implementation of Artificial Neural Networks
In this paper, a method of classification of handwritten signature based on neural networks, and FPGA implementation is proposed. The designed architecture is described using Very High Speed Integrated Circuits Hardware Description Language (VHDL). The proposed application consists of features extraction from handwritten digit images, and classification based on Multi Layer Perceptron (MLP). Th...
متن کاملCompact hardware liquid state machines on FPGA for real-time speech recognition
Hardware implementations of Spiking Neural Networks are numerous because they are well suited for implementation in digital and analog hardware, and outperform classic neural networks. This work presents an application driven digital hardware exploration where we implement real-time, isolated digit speech recognition using a Liquid State Machine. The Liquid State Machine is a recurrent neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.05552 شماره
صفحات -
تاریخ انتشار 2015